Abstract

Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities. The source code of AGML is available at https://github.com/yushanqiu/AGML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.