Abstract

Agmatine–cannabinoid interactions are supported by the close association between cannabinoid CB 1 receptors and agmatine immunoreactive neurons and evidence that shared brain mechanisms underlie the pharmacological effects of agmatine and cannabinoid agonists. In the present study, we used the hot-plate assay of thermal nociception to determine if agmatine alters cannabinoid action through activation of imidazoline sites and/or alpha 2-adrenoceptors. WIN 55212-2 (1, 2 or 3 mg/kg, i.p.) or CP55,940 (1, 2 or 3 mg/kg, i.p.) administration increased hot-plate response latency. Agmatine (50 or 100 mg/kg, i.p.) was ineffective. Administration of agmatine (50 mg/kg, i.p.) with WIN 55212-2 (1, 2 or 3 mg/kg, i.p.) or CP55,940 (1, 2 or 3 mg/kg, i.p.) produced response-latency enhancement. Regression analysis indicated that agmatine increased the potency of WIN 55212-2 and CP55,940 by 3- and 4.4-fold, respectively, indicating synergy for both drug interactions. Idazoxan, a mixed imidazoline site/alpha 2-adrenoceptor antagonist, but not yohimbine (5 mg/kg, i.p.), a selective alphia 2-adrenoceptor antagonist, blocked response-latency enhancement produced by a combination of WIN 55212-2 (2 mg/kg) and agmatine. Response-latency enhancement produced by WIN 55212-2 (2 mg/kg) was blocked by SR 141716A (5 mg/kg, i.p.), a cannabinoid CB 1 receptor antagonist; attenuated by idazoxan (2 and 5 mg/kg); and not affected by yohimbine (5 mg/kg). These results demonstrate a synergistic interaction between agmatine and cannabinoid agonists and suggest that agmatine administration enhances cannabinoid action in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call