Abstract
Genetic and biochemical studies suggest that free radical-derived reactive oxygen species play a key role in a common mechanism of aging in many or all animal species. This led to the hypothesis that the quality of life in old age may be improved by pharmacological or dietary thiol antioxidants. This review describes important details about how the organism deals with its own thiol antioxidants. Aging was found to be associated with an oxidative shift in the thiol/disulfide redox state (REDST) of the intracellular glutathione pool and of the plasma cyst(e)ine and albumin pools. There is also a decrease in plasma thiol (mainly cysteine) concentration. The oxidative shift in intracellular REDST was found to be typically associated with cellular dysfunctions. Studies in humans related to plasma REDST revealed correlations with aging-related pathophysiological processes, suggesting that oxidative changes in REDST play a key role in processes and diseases which limit the human life span. The age-related shift in plasma REDST is mediated, at least partly, by the decreasing capacity to remove dietary cysteine from the oxidative environment of the blood. Thiol antioxidants were found to ameliorate various aging-related processes but obviously ought to be used with caution in consideration of the oxidative environment of the blood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.