Abstract

In order to study the state of health (SOH) of unbalanced battery packs in real life, a thorough analysis is carried out using only data available and standard charging material. The possible relationships between the different parameters and how they affect aging are studied, leading to the identification of five key parameters to indicate aging, as well as parameters influencing aging. Based on the measurement results, a simple black box model using evolutionary genetic algorithm is presented, which is used as end-of-life prediction model of the battery pack, successfully providing an approximate estimation of aging. This approach might thus be used for the supervision of battery systems during real-life use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.