Abstract

Viscoelastic sandwich structure plays an important role in mechanical equipment, nevertheless viscoelastic material inevitably suffers from gradual aging. For guaranteeing the operation safety of mechanical equipment, it is urgent to perform the aging state detection of viscoelastic sandwich structure with vibration response signal analysis. However, the structural vibration response signal is non-stationary and its variation caused by the structural aging state change is very puny, and the abnormal state samples is lacking. The vibration-based structural aging state detection has become a challenging task. Therefore, a novel method based on redundant second generation wavelet packet transform (RSGWPT) and fuzzy support vector data description (FSVDD) is proposed for this task. For extracting sensitive aging feature information, RSGWPT is introduced to process the structural vibration response signal, and multiple energy features are extracted from the frequency-band signals to reflect structural aging state change. For accurate and automatic aging state identification, by fusing fuzzy theory, FSVDD only uses the normal state samples for training and can identify the abnormal severity degrees is developed to identify the structural aging states. The proposed method is applied on a viscoelastic sandwich structure to validate its effectiveness, and different structural aging states are created through the accelerated aging of viscoelastic material. The analysis results show the outstanding performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.