Abstract

A Zr4+-doped SiO2/TiO2 composite film (Zr4+-doped STCF) was prepared on a wood surface via a sol-gel method to improve its photocatalytic activity and aging resistance. The physicochemical characteristics of the composite film were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and low-temperature N2 sorption methods. The photocatalytic degradation of methyl orange and its aging resistance under ultraviolet light were tested. The results showed that the composite film had an anatase TiO2 crystal form, and the addition of Zr4+ to the composite film noticeably improved photocatalytic activity and aging resistance. The highest degradation percentage occurred at 0.5 wt% Zr4+ (59.2%) when the Zr4+ ion doping amount was 2.5 wt%, and the aging resistance of the composite film also peaked under these conditions. The wood surface coated with Zr4+-doped STCF exhibited strong aging resistance and photocatalytic activity, which protected the surface from discoloration and decomposition. As it degraded organic pollutants, the modified wood surface had a good self-cleaning function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.