Abstract

Aging induces marked alterations in the structural, mechanical, and transport properties in the extracellular matrix (ECM). To provide computational data on the impact of aging-related changes on ECM mechanical quantities and transport properties, we developed a computational model for the aging-related ECM fibrous network. A finite volume method was utilized to calculate the velocity field, pressure loss, hydraulic conductivity and drag force. Our results quantitatively demonstrated that the hydraulic conductivity in most of the aging ECM-mimetic fibrous networks tends to be significantly lower than young ECM-mimetic fibrous networks, while pressure loss and drag force show the opposite trend. All these findings highlight that such altered mechanical quantities and transport properties during aging can be important biological cues to assess the aging process and eventually provide insights in treating aging-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.