Abstract

Despite aging is closely linked to increased aneuploidy in the oocytes, the mechanism of how aging affects aneuploidy remains largely elusive. Here, we applied single-cell parallel methylation and transcriptome sequencing (scM&T-seq) data from the aging mouse oocyte model to decode the genomic landscape of oocyte aging. We found a decline in oocyte quality in aging mice, as manifested by a significantly lower rate of first polar body exclusion (P < 0.05), and dramatically increasing aneuploidy rate (P < 0.01). Simultaneously, scM&T data suggested that a large number of differential expression genes (DEGs) and differential methylation regions (DMRs) were obtained. Next, we identified strong association of spindle assembly and mitochondrial transmembrane transport during oocyte aging. Moreover, we verified the DEGs related to spindle assembly (such as Naip1, Aspm, Racgap1, Zfp207) by real-time quantitative PCR (RT-qPCR) and checked the mitochondrial dysfunction by JC-1 staining. Pearson correlation analysis found that receptors for mitochondrial function were strongly positively correlated with abnormal spindle assembly (P < 0.05). In conclusion, these results suggested that the mitochondrial dysfunction and abnormal spindle assembly of aging oocytes ultimately may lead to increased oocyte aneuploidy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.