Abstract
The use of biodegradable plastics (BPs) has been widely promoted in recent years, but before their complete degradation, the phase of microplastics (MPs) is inevitable. However, little information concerning the production of MPs from blended polymers is available. This study aimed to explore the characteristics of MPs produced from blended plastics and the development of biofilms on plastic surfaces under long-term aging. Here, three blended materials (i.e., PBAT (53%)+PLA (10%)+Starch (20%), PBAT (80%)+Starch (20%), HDPE (60%)+CaCO3 (40%)) were aged for 90 days in air, deionized (DI) water and seawater. The results showed massive production of MPs (9653 ± 3920–20,348 ± 5857 items/g) from blended plastics accompanied by a large quantity of flocculent substances during 90 days aging period. Furthermore, the richness of bacteria communities on hydrophobic plastics (i.e., PBAT (53%)+PLA (10%)+Starch (20%), PBAT (80%)+Starch (20%)) was higher than hydrophilic plastics (i.e., HDPE (60%)+CaCO3 (40%)), and bacterial communities attached to blended plastics exhibited significantly variation with aging times. Overall, promoting the marketable application of blended plastics is risky if their environmental behavior is not effectively addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.