Abstract

There are over 600 miles of power cable installed in a typical nuclear power plant. Degradation due to thermal and radiation damage of cable insulation has been identified as one of the key factors that contribute to the loss of performance and ultimate failure of the cable. A critical aspect of cable health monitoring is to understand the nature of degradation and develop aging models to predict the service lifetime of the insulation. In this work, it is proposed to evaluate the effectiveness of four different modeling approaches to evaluate the aging behavior and remaining useful life of industrial-grade ethylene propylene rubber (EPR), a cable insulation material used extensively in nuclear power plants. A comparative study of the ability of these prognostic models to reliably predict the service lifetime of EPR while accounting for the presence of various inclusions and impurities in the production grade material will be conducted, to test their industrial applicability and evaluate their relative performance

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.