Abstract

Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores.

Highlights

  • Life history traits such as life span, age at sexual maturity, and maximum growth rate are important factors for understanding the biology of any organism, but they are most important in a comparative context in studies of evolution and evolutionary ecology

  • Besides the discovery of fossil eggs and clutches, the most important source of information on their life history traits is the growth record preserved in the histology of their fossilized bones. It is the aim of this study to provide, for the first time, baseline data on allometries of aging, maturation, and growth for Sauropodomorpha. To obtain these allometries between body mass and life history traits, we studied the long bone histology of a single individual of the basal sauropodomorph Plateosaurus engelhardti and of six sauropod individuals pertaining to four different taxa, which have a good growth mark record preserved in their humerus or femur (Table 1)

  • Growth models While the vBGM and CRGM were only applicable to a few specimens, the logistic model (LGM) was applicable to all Sauropodomorpha individuals studied

Read more

Summary

Introduction

Life history traits such as life span, age at sexual maturity, and maximum growth rate are important factors for understanding the biology of any organism, but they are most important in a comparative context in studies of evolution and evolutionary ecology. The scarcity of estimates of life history traits has so far limited the detection of reliable allometries between body mass and life history traits for dinosaurs, and in particular for Sauropodomorpha, which include the largest terrestrial animals that ever lived on Earth, the Sauropoda [8,9]. In spite of this scarcity, presumed differences in the life history of sauropods in comparison to extant taxa have been suggested to contribute to their unique gigantism [9,10,11,12,13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call