Abstract
Retina is particularly susceptible to aging as oxidative damage accumulates within retina, leading to age-related retinal dysfunction or even visual loss. However, the underlying mechanisms still remain obscure and effective therapeutic strategy is urgently in need. Here, we quested for the answer particularly focusing on mitochondrial homeostasis and O-GlcNAcylation in rat retina. By comparing expression of electron transfer chain complexes and key factors in mitochondrial biogenesis and dynamics in retinas of aged and young Sprague-Dawley rats, we found that mitochondrial Complex I, II, IV and V were increased in aged retina with decreased mtTFA and Mfn2. Also, we noticed that p38 and JNK of MAPK signaling were substantially more activated in aged retina, suggesting stress induction. In addition, we found that pan-O-GlcNAcylation was remarkably stronger with lower OGA expression in aged retina. To further elucidate the roles of Mfn2 and O-GlcNAcylation, we employed ARPE-19 cells and found that ATP production, oxygen consumption, and mitochondrial membrane potential were reduced and ROS level was increased by Mfn2 knockdown, while treating with PUGNAc or UDP-GlcNAc heightened oxygen consumption and reduced ROS. Our results suggest disrupted mitochondrial homeostasis may increase oxidative stress; yet enhanced O-GlcNAcylation might defend against oxidative stress and promote mitochondrial respiration in aged retina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.