Abstract

During aging, the vascular endothelium changes functionally and morphologically. Although previous studies have shown that endothelium-derived eicosanoids increase vessel tone in aging, the precise mechanism(s) has not been fully determined. We hypothesized that aging would increase prostaglandin H synthase (PGHS)-dependent vasoconstriction as well as decrease nitric oxide-dependent relaxation. Mesenteric arteries from 3-month-old (n=9) and 12-month-old (n=14) female Sprague-Dawley rats were studied in a myograph system. Aging significantly blunted the endothelium-dependent relaxation response to methacholine compared with young rats (EC(50)=7.77x10(-8) versus 2.68x10(-8) mol/L, P<0. 05). Nitric oxide synthase inhibition reduced methacholine-induced relaxation in the young (P<0.05) but had no effect in the aging group. Specific inhibition of the PGHS-1 isoform did not significantly affect methacholine-mediated relaxation in the young or aged groups. However, PGHS-2 inhibition greatly enhanced relaxation to methacholine (1.59x10(-8) versus 7.77x10(-8) mol/L, P<0.01) in the aged group only, restoring vessel function to that of the young. In the aged group, inhibition of the prostaglandin H(2)/thromboxane A(2) receptor enhanced methacholine-dependent relaxation similar to that of PGHS-2 inhibition. Moreover, arterial expression of PGHS-2 protein increased with age. In summary, nitric oxide-dependent modulation of vessel function decreased with age, PGHS-1 did not significantly affect vessel tone in either the young or aging group, and PGHS-2 greatly increased vasoconstriction in aging. Thus, we have identified enhanced PGHS-2-mediated vasoconstriction in aging and therefore suggest that inhibition of this isoform is potentially a new target for therapeutic intervention to improve vascular function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.