Abstract

Author SummaryAging has been demonstrated in many animals and even in bacteria, but there is little empirical work showing that clonal plants age. Evidence for aging in long-lived perennials is scarce because it typically requires survivorship or fecundity schedules from long-term demographic data. Given the extreme lifespan of many long-lived perennials, it is difficult to follow cohorts of individual clones to collect late-life survivorship or fertility. Our work offers a novel approach for obtaining late-life demographic data on a clonal species by using genetic data to estimate the age of individual clones. We studied plant clones in a natural population of trembling aspen, which grows clonally via lateral root suckers. By coupling estimates of each clone's age with a measure of its male reproductive performance, we show that long-lived plant clones do senesce. Although clonal plants have the capacity for continued growth and reproduction even late in life, mutations that reduce fertility can accumulate because selection on sexual fitness is absent during clonal growth, potentially explaining senescence in this species.

Highlights

  • IntroductionEven bacteria, demonstrate a decline in survivorship or reproductive performance with increasing age (‘‘senescence’’) [1,2]

  • Many species of animals, and even bacteria, demonstrate a decline in survivorship or reproductive performance with increasing age (‘‘senescence’’) [1,2]

  • Aging has been demonstrated in many animals and even in bacteria, but there is little empirical work showing that clonal plants age

Read more

Summary

Introduction

Even bacteria, demonstrate a decline in survivorship or reproductive performance with increasing age (‘‘senescence’’) [1,2]. Because many perennial plants and especially clonal plants continue to grow throughout life, their reproductive potential can rise over time [10]. This rising reproductive potential counters the decline in natural selection that accompanies aging, allowing selection to remain effective even in late life. It is this characteristic of indeterminate growth in perennial plants that has led some to speculate that these organisms defy aging [1,3,10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.