Abstract

The purpose of this study was twofold: 1) to characterize the zirconia (Y-TZP) surfaces through scanning electronic microscopy associated with energy-dispersive spectroscopy and atomic force microscopy after the deposition of a thin organosilicon film by nonthermal plasma (NTP) treatment, and 2) to determine the zirconia surface hydrophilicity, before and after aging, through surface energy analysis. Surfaces of 16 zirconia disks (10 x 3 mm) were treated for 30 min each with hexamethyldisiloxane and argon plasmas, followed by oxygen plasma. Disks were analyzed before NTP treatment, immediately after NTP treatment, and after aging for 7, 15, and 30 days. The surface energy of the Y-TZP disks was measured with a goniometer. Quantitative data were submitted to statistical analysis using ANOVA and Tukey's test (p < 0.05). Immediately after NTP treatment, the surface energy of the zirconia disks was significantly higher than at any other tested period (p < 0.001), and the water contact angle on the zirconia disks was reduced to 0 degrees. Similar surface energy results were obtained before NTP treatment and after 15 or 30 days of aging (p > 0.05; Tukey's test). Energy-dispersive spectroscopy results revealed the presence of carbon, oxygen, and silicon on the surface after NTP treatment. NTP treatment was useful for treating the zirconia surface for cementation procedures, as it produced a high level of hydrophilicity on the zirconia surface. However, this high level of hydrophilicity did not persist after aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.