Abstract

Abstract Battery aging is an inevitable macroscopic phenomenon in the use of the battery, which is characterized by capacity decline and power reduction. If the charging and discharging strategy does not adjusted with the aging state, it is easy to cause battery abuse and accelerate the decline. In order to avoid this situation, the aging model with consideration of the battery degradation is coupled into the pseudo-two-dimensional (P2D) model. An aging effect-aware finite element model that can describe battery physical information accurately is presented in this paper. The model parameters are divided into four parts: structure parameters, thermodynamic parameters, kinetic parameters and aging parameters. The identification experiments are designed based on the characteristics of these types of parameters. The decoupling and parameter identification methods of kinetic parameters according to the response characteristics of each parameter under specific excitation, and state of charge (SOC) partitioned range identification technology of aging parameters are proposed and verified. Finally, the aging effect-aware model and the identification parameters are verified under constant current (CC) and different dynamic conditions with different charge rate (C-rate). And the ability of the proposed model to track the aging trajectory in the whole life cycle is verified under various cycle conditions. The proposed model can be applied to aging mechanism analysis and health management from point of inner properties of the batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.