Abstract

This study was undertaken to examine some aspects of the anatomical substrate for reproductive senescence. Immunocytochemically identified luteinizing hormone-releasing hormone neurons and their processes in the male rat brain preoptic area were compared in young adult (2–4 months), middle-aged (12–14 months) and old (20–23 months) animals. At the light microscopic level there were no age-dependent differences in total numbers or sizes of LHRH neurons nor in their distribution in the brain. Examination of these neurons at the electron microscopic level did reveal significant differences in certain organelles and in the degree and kind of synaptic input. Random sections of middle-aged luteinizing hormone-releasing hormone neurons more frequently passed through the nucleolus and the incidence of nematosomes was higher than in luteinizing hormone-releasing hormone neurons from the young and old animals. Quantitative measures of synaptic input to luteinizing hormone-releasing hormone soma and dendrites as well as to unidentified neurons in the same thin section were made. These are reported as percent of membrane that showed synaptic structure. Dendrites of both luteinizing hormone-releasing hormone and nonidentified neurons were more densely innervated than perikarya. The density of synaptic input to luteinizing hormone-releasing hormone neurons was significantly greater than that to nonidentified neurons in young and middle-aged animals, but was equal to that of nonidentified neurons by old age. Age-related changes were noted in synaptic organization with the most significant change being an increased input to luteinizing hormone-releasing hormone perikarya. Indeed, synaptic input to luteinizing hormone-releasing hormone perikaryal membrane was increased three-fold by middle age and ten-fold by old age. Density of synaptic input to luteinizing hormone-releasing hormone dendritic membrane did not change with age. There were no aging changes in percentage of membrane with synaptic structure in nonidentified elements. Synapses were also classified on the basis of their synaptic vesicle content. There were proportionately more synaptic boutons containing round clear than pleomorphic vesicles in the young sample. The proportion of synapses with pleomorphic vesicles increased with age onto both luteinizing hormone-releasing hormone perikarya and their dendrites. The proportion of boutons containing some electron dense-core vesicles along with clear vesicles decreased with age onto both luteinizing hormone-releasing hormone and nonidentified neurons and their processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call