Abstract

Models of many-species ecosystems, such as the Lotka-Volterra and replicator equations, suggest that these systems generically exhibit near-extinction processes, where population sizes go very close to zero for some time before rebounding, accompanied by a slowdown of the dynamics (aging). Here, we investigate the connection between near-extinction and aging by introducing an exactly solvable many-variable model, where the time derivative of each population size vanishes at both zero and some finite maximal size. We show that aging emerges generically when random interactions are taken between populations. Population sizes remain exponentially close (in time) to the absorbing values for extended periods of time, with rapid transitions between these two values. The mechanism for aging is different from the one at play in usual glassy systems: At long times, the system evolves in the vicinity of unstable fixed points rather than marginal ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call