Abstract

The changes in the chemical structure, surface morphology and crystallinity are reported for three different polymers (LDPE, PET and uPVC) in microplastic form, after being artificially exposed to different aging agents that can affect microplastics in urban environments: ozone, UV-C, and solar radiation. In parallel to the laboratory experiments, the microplastics were exposed to real weathering conditions for three-months in a building rooftop located in the city of Porto (Portugal). By analysing the (virgin and aged) microplastic samples periodically through ATR-FTIR spectroscopy and estimating the Carbonyl Index, it was possible to sketch the aging degree evolution through time and identify the most aggressive agents for each polymer regarding the changes in their chemical structure. SEM and XRD measurements allowed to complement the ATR-FTIR results, giving a more complete picture of the effects of each treatment on each polymer and suggesting that ATR-FTIR measurements are not sufficient to correctly evaluate the aging degree of microplastics. The changes observed in the microplastic particles studied support the theory that microplastics in the environment undergo aging and change their characteristics through time, potentially affecting their behavior and intensifying their impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call