Abstract

The rupture of a polymer chain maintained at temperature T under fixed tension is prototypical to a wide array of systems failing under constant external stress and random perturbations. Past research focused on analytic and numerical studies of the mean rate of collapse of such a chain. Surprisingly, an analytic calculation of the probability distribution function (PDF) of collapse rates appears to be lacking. Since rare events of rapid collapse can be important and even catastrophic, we present here a theory of this distribution, with a stress on its tail of fast rates. We show that the tail of the PDF is a power law with a universal exponent that is theoretically determined. Extensive numerics validate the offered theory. Lessons pertaining to other problems of the same type are drawn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.