Abstract

Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. Cholinergic afferents from the NBM modulate glutamatergic transmission in neocortex, and glutamate is known to be involved in dendritic plasticity. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed the effect of cholinergic deafferentation on expression of the AMPA receptor subunit GluR1 in frontal cortex of young adult and aging rats. Young adult, middle-aged, and aged rats received sham or 192 IgG-saporin lesions of the NBM, and an unbiased stereological technique was used to estimate the total number of intensely GluR1-immunopositive neurons in layer II–III of frontal cortex. While the number of GluR1-positive neurons was increased in both middle-aged and aged rats, lesions markedly increased the number of intensely GluR1-immunopositive neurons in frontal cortex of young adult rats only. This age-related difference in lesion-induced expression of AMPA receptor subunit protein could underlie the age-related differences in dendritic plasticity after NBM lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.