Abstract
During aging, memory retention and persistence of long-term potentiation (LTP) are impaired, suggesting an aging-related deterioration in mechanisms regulating information storage. Late-phase LTP requires synthesis of proteins at synapses as well as integrated regulation of gene networks. Because aging diminishes the persistence of LTP, primarily by affecting the transition between early and late phases, we assessed whether this was reflected in perturbation of gene networks. Using DNA microarray analysis, we compared LTP-associated gene expression in young (5 months), middle-aged (15 months), and old (22 months) male Sprague–Dawley rats. As expected, we found no significant difference in LTP measured 20 minutes postinduction; however, we found that overall more genes were regulated in the young group. Bioinformatics predicted not only dysregulation of activator protein-1 and nuclear factor kB transcription factor activity and epigenetic modifications but also dysregulation of protein synthesis. Notably, we confirmed an age-related impairment in metabotropic and ionotropic receptor–mediated synaptic protein synthesis. Together, these results demonstrate that LTP-specific gene expression is altered with aging and suggest that dysregulation of synaptic protein synthesis also contributes to the age-dependent reduction in LTP persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.