Abstract
It is well-established that almost all cellular components of innate and adaptive immunity undergo age-related remodelling. The findings on age-related changes in both human and mouse dendritic cells (DCs) are conflicting, whereas there are no data on the influence of aging on rat DCs. In an attempt to fill this gap, freshly isolated splenic DCs expressing CD103 (αOX-62 integrin), a DC specific marker recognized by MRC OX62 monoclonal antibody, from 3- (young) and 26-month-old (aged) Albino Oxford rats were examined for subset composition, expression of activation/differentiation markers (CD80, CD86 and CD40 and MHC II molecules) and endocytic capacity using flow cytometric analysis (FCA). In addition, splenic OX62+ DCs cultured in the presence or absence of LPS were analysed for the activation marker and TNF-α, IL-6, IL-12, IL-23, TGF-β1, IL-10 expression using FCA, RT-PCR and ELISA, respectively. Moreover, the allostimulatory capacity of OX62+ DCs and IFN-γ, IL-4 and IL-17 production by CD4+ T cells in mixed leukocyte reaction was quantified using FCA and ELISA, respectively. It was found that aging: i) shifts the CD4+:CD4- subset ratio in the OX62+ DCs population towards the CD4- subset and ii) influences DCs maturation (judging by activation marker expression and efficiency of endocytosis) by affecting the expression of intrinsic (TNF-α and IL-10) and extrinsic maturation regulators. Furthermore, in LPS-matured OX62+ DCs from aged rats expression of TNF-α, IL-12, IL-23 and IL-6 was increased, whereas that of IL-10 was diminished compared with the corresponding cells from young rats. Moreover, in MLR, OX62+ DCs from aged rats exhibited enhanced Th1/Th17 driving force and diminished allostimulatory capacity compared with those from young rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.