Abstract

Polyaniline-Zn/V2O5 nanocomposites were prepared in the presence of toluene-4-sulfonic acid monohydrate as an anionic surfactant via an in situ oxidation polymerization method. The structural study of the nanocomposites was carried out using FTIR and XRD analysis, and their surface morphology was characterized through SEM analysis. The BET surface area of a 3 wt% nanocomposite was 386 m2 g-1, which is higher compared to that of PANI. The Kelvin two probe method was used to study DC conductivity, and it was found that the conductivity increases with increasing temperature. Among all the PANI nanocomposites, 3 wt% PANI-Zn/V2O5 shows a high conductivity of 13.8 S cm-1. Cyclic voltammetry results show the characteristic oxidation-reduction peaks at 0.93 V and 0.24 V for polyaniline and its nanocomposites, respectively. Hydrogen absorption studies were carried out using volumetric sorption measurement technique. At room temperature, it was found that the hydrogen adsorption capacity of polyaniline fibres is about 4.5 wt%, and its absorption capacity increases two-fold upon increasing the temperature up to 60 °C. Conversely, the 3 wt% PANI-Zn/V2O5 nanocomposite showed a high absorption capacity of 6.6 wt% compared with other compositions, which is may be due to the presence of nitrogen (N) molecules in polyaniline and its particular porous fiber architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.