Abstract
Cygnus X-3 (Cyg X-3) is a well-known microquasar producing variable emission at all wavelengths. Cyg X-3 is a prominent X-ray binary producing relativistic jets, and studying its high energy emission is crucial for the understanding of the fundamental acceleration processes in accreting compact objects. Aims. Our goal is to study extreme particle acceleration and {\gamma}-ray production above 100 MeV during special spectral states of Cyg X- 3 usually characterized by a low hard X-ray flux and enhanced soft X-ray states. We observed Cyg X-3 with the AGILE satellite in extended time intervals from 2009 Jun.-Jul., and 2009 Nov.-2010 Jul. We report here the results of the AGILE {\gamma}-ray monitoring of Cyg X-3 as well as the results from extensive multiwavelength campaigns involving radio (RATAN-600, AMI-LA and Mets\"{a}hovi Radio Observatories) and X-ray monitoring data (XTE and Swift). We detect a series of repeated {\gamma}-ray flaring activity from Cyg X-3 that correlate with the soft X-ray states and episodes of decreasing or non-detectable hard X-ray emission. Furthermore, we detect {\gamma}-ray enhanced emission that tends to be associated with radio flares greater than 1 Jy at 15 GHz, confirming a trend already detected in previous observations. The source remained active above 100 MeV for an extended period of time (almost 1.5 months in 2009 Jun.-Jul. and 1 month in 2010 May). We study in detail the short timescale {\gamma}-ray flares that occurred before or near the radio peaks. Our results confirm the transient nature of the extreme particle acceleration from the microquasar Cyg X-3. A series of repeated {\gamma}-ray flares shows correlations with radio and X-ray emission confirming a well established trend of emission. We compare our results with Fermi-LAT and MAGIC TeV observations of Cyg X-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.