Abstract

Abstract GRB 190114C represents a breakthrough for the physics of gamma-ray bursts (GRBs), being the first GRB with delayed emission above 300 GeV, as reported by MAGIC. We present in this paper the sub-MeV/MeV data of the prompt and early afterglow emissions of GRB 190114C, as detected by AGILE and Konus-Wind, in the 20 keV–100 MeV energy range. The first stages of the burst exhibit multiple emission components, associated with an interesting spectral evolution. The first 2 s of the prompt emission can be described by a single “Band-like” spectral component. The successive 4 s show the presence of an additional high-energy spectral component, which quickly evolves into a “hard-flat” component of the νF ν spectrum, extending up to 10–100 MeV and likely produced by inverse Compton radiation, whose onset and evolution are clearly shown in our data. After this phase, the νF ν spectrum evolves into a “V shape,” showing the persistence and spectral hardening of the additional high-energy component in substantial agreement with Fermi and Swift results. We also analyze the first ∼200 s of the early afterglow that show a reflaring episode near T 0 + 15 s. We identify a new, so-far-unnoticed flux temporal break near T 0 + 100 s, which is detected in hard X-rays by both Konus-Wind and INTEGRAL/SPI-ACS. We find this break incompatible with the commonly assumed adiabatic evolution of a fireball in a constant-density medium. We interpret this break as a consequence of radiative evolution of the early afterglow from a fireball expanding in a wind-like circumburst medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.