Abstract
High-speed machine tools typically provide high spindle speeds and feedrates to achieve an effective material removal rate (MRR). However, it is not possible to realize the full extent of their high-speed capabilities due to the sharp corners of toolpaths which are introduced by conventional machining strategies, such as contour- and direction-parallel toolpaths. To address this limitation, spiral toolpaths that can reduce the magnitude of sudden direction changes have been developed in previous researches. Nevertheless, for some pockets, the average radial cutting width is significantly decreased while the total length of the toolpath is significantly increased as compared to contour- and direction-parallel toolpath. In this situation, spiral toolpath may take more machining time. To overcome these drawbacks, an aggressive spiral toolpath generation method based on the medial axis (MA) transformation is proposed in machining pocket without islands inside, which refers to no additional material inside the counter. The salient feature of this work is that it integrates the advantages of both conventional contour-parallel machining strategy and the existing spiral toolpath machining strategy. The cutting width at each MA point is determined based on the diameter of the locally inscribed circle (LIC) of the MA point and the topological structure of MA. A distance-constrained contour determination algorithm is utilized to calculate the toolpath for each pass. Finally, a circular arc transition strategy is used to transform all the isolated passes into a spiral toolpath. Experiments are conducted to show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.