Abstract

Mimetic species have evolved to resemble other species to avoid predation (protective mimicry) or gain access to food (aggressive mimicry). Mimicry systems are frequently tripartite interactions involving a mimic, model and 'signal receiver'. Changes in the strength of the relationship between model and signal receiver, owing to shifting environmental conditions, for example, can affect the success of mimics in protective mimicry systems. Here, we show that an experimentally induced shift in the strength of the relationship between a model (bluestreak cleaner fish, Labroides dimidiatus) and a signal receiver (staghorn damselfish, Amblyglyphidodon curacao) resulted in increased foraging success for an aggressive mimic (bluestriped fangblenny, Plagiotremus rhinorhynchos). When the parasite loads of staghorn damselfish clients were experimentally increased, the attack success of bluestriped fangblenny on damselfish also increased. Enhanced mimic success appeared to be due to relaxation of vigilance by parasitized clients, which sought cleaners more eagerly and had lower overall aggression levels. Signal receivers may therefore be more tolerant of and/or more vulnerable to attacks from aggressive mimics when the net benefit of interacting with their models is high. Changes in environmental conditions that cause shifts in the net benefits accrued by models and signal receivers may have important implications for the persistence of aggressive mimicry systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.