Abstract
This article presents a robust actuator fault estimation strategy design for a three-degree of freedom (3-DOF) helicopter prototype which can be adapted to aggressive maneuvers. First, considering large pitch angle condition during flight, nonlinear coupling characteristic of the helicopter system is exploited. As the pitch angle can be measured in real time, a polytopic linear parameter varying (LPV) model is developed for the helicopter system. Furthermore, considering measurement noises in the actual helicopter system, the dynamical model of helicopter system is modified accordingly. Then, based on the modified polytopic LPV model, a robust unknown input observer is developed for the helicopter system to realize actuator fault estimation, in which both measurement noises and large pitch angle are considered. Robust performance of proposed fault estimation approach is guaranteed by using energy-to-energy strategy. And the observer gains are calculated by using linear matrix inequalities. Finally, based on a 3-DOF helicopter prototype, both simulations and experiments are conducted. The effects of measurement noises and large pitch angle on the fault estimation performance are sufficiently demonstrated. And effectiveness as well as advantages of the proposed observer is verified by using comparative analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.