Abstract
AbstractLimited training data and annotation shortage are challenges for developing automated medical image analysis systems. As a potential solution, self-supervised learning (SSL) causes an increasing attention from the community. The key part in SSL is its proxy task that defines the supervisory signals and drives the learning toward effective feature representations. However, most SSL approaches usually focus on a single proxy task, which greatly limits the expressive power of the learned features and therefore deteriorates the network generalization capacity. In this regard, we hereby propose two strategies of aggregation in terms of complementarity of various forms to boost the robustness of self-supervised learned features. We firstly propose a principled framework of multi-task aggregative self-supervised learning from limited medical samples to form a unified representation, with an intent of exploiting feature complementarity among different tasks. Then, in self-aggregative SSL, we propose to self-complement an existing proxy task with an auxiliary loss function based on a linear centered kernel alignment metric, which explicitly promotes the exploring of where are uncovered by the features learned from a proxy task at hand to further boost the modeling capability. Our extensive experiments on 2D and 3D medical image classification tasks under limited data and annotation scenarios confirm that the proposed aggregation strategies successfully boost the classification accuracy.KeywordsSelf-supervised learningFeature complementarity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.