Abstract

Organelle-specific imaging and dynamic tracking in ultrahigh resolution is essential for understanding their functions in biological research, but this remains a challenge. Therefore, a facile strategy by utilizing anion-π+ interactions is proposed here to construct an aggregation-induced emission luminogen (AIEgen) of DTPAP-P, not only restricting the intramolecular motions but also blocking their strong π-π interactions. DTPAP-P exhibits a high photoluminescence quantum yield (PLQY) of 35.04% in solids, favorable photostability and biocompatibility, indicating its potential application in super-resolution imaging (SRI) via stimulated emission depletion (STED) nanoscopy. It is also observed that this cationic DTPAP-P can specifically target to mitochondria or nucleus dependent on the cell status, resulting in tunable organelle-specific imaging in nanometer scale. In live cells, mitochondria-specific imaging and their dynamic monitoring (fission and fusion) can be obtained in ultrahigh resolution with a full-width-at-half-maximum (fwhm) value of only 165 nm by STED nanoscopy. This is about one-sixth of the fwhm value in confocal microscopy (1028 nm). However, a migration process occurs for fixed cells from mitochondria to nucleus under light activation (405 nm), leading to nucleus-targeted super-resolution imaging (fwhm= 184 nm). These findings indicate that tunable organelle-specific imaging and dynamic tracking by a single AIEgen at a superior resolution can be achieved in our case here via STED nanoscopy, thus providing an efficient method to further understand organelle's functions and roles in biological research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call