Abstract
The second law of thermodynamics is a central organizing principle of nature, whose core concept, Boltzmann entropy, is fundamentally important in landscape ecology research. However, the use of this entropy has remained at a conceptual level in landscape ecology for one and a half centuries. It was not until very recently that methods were developed for computing the Boltzmann entropy of landscape gradients and mosaics. The aim of this study was to examine the computational method (i.e., resampling-based method) for landscape gradients. The first objective was to validate whether the Boltzmann entropy computed using this method was thermodynamically consistent (i.e., consistent with statistical thermodynamics). The second objective was to propose a different method for computing thermodynamically consistent entropy. A kinetic-theory-based approach was proposed for testing the thermodynamic consistency of entropy. This approach was applied to both relative and absolute Boltzmann entropies by the resampling-based method, revealing that the absolute Boltzmann entropy is only partly consistent. Hypothesis-driven experiments were designed to determine the cause. The cause was demonstrated to be the generalization technique for generating the macrostate of a landscape gradient, which is called resampling. A different computational method was developed on the basis of an alternative technique (i.e., aggregation). Validation of its thermodynamic consistency is necessary even if a “thermodynamic” entropy is computed strictly according to the formula. The entropy computed using the aggregation-based method passed the validation and is recommended to be used in linking landscape ecological processes with statistical thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.