Abstract

Annealing is a valuable method for fine-tuning the ultrasmall magnetic properties of alloy nanoparticles (NPs) by controlling their sizes, modifying their surfaces, and affecting their magnetic interactions. Herein, we study the effect of moderate annealing (450 °C) on strongly interacting NiCr nanoparticle assemblies (0 ≤ atom % Cr ≤ 15) immediately after deposition. Concurrent temperature-dependent electron microscopy and magnetization data demonstrate the interplay of two competing factors, namely, enhanced particle aggregation and element-specific surface segregation, on the magnetic properties, with the former boosting and the latter suppressing them. Strong interparticle interactions can lead to a magnetic response different from that of superparamagnetic particles, namely, from canonical spin-glass (0 atom % Cr) to correlated spin-glass (5–15 atom % Cr) behavior below higher spin-glass transition temperatures Tg (20–350 K). The observation of “high-field susceptibility” below cryogenic temperatures (≤20 K) is ascribed to the presence of inhomogeneity/defects caused by Cr segregation. This work emphasizes the necessity of taking into account the delicate balance of such competing factors to understand the magnetic properties of nanoparticulate samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call