Abstract

The aggregation under shear, of latex particles coated with whey protein isolate was monitored, in a continuous phase with a complex behaviour in relation to temperature dependence and shear thinning. The monitoring was done with viscosity measurements and microscopy. An aggregating dispersion of whey coated polystyrene latex particles, salt, sucrose and gelatine was sheared in a rheometer at shear rates between 0.05 and 5 s −1. The viscosity was monitored as a function of time during a temperature increase from 30 to 60°C. The viscosity curves were interpreted with the aid of additional information from light microscopy micrographs. The aggregation was clearly visible as an increase in viscosity. Aggregation was observed to initiate at a temperature between 40 and 50°C. Unbound protein, i.e. protein not a part of particle coating, was found to be essential for the aggregation of latex particles. After aggregation, a shear thinning behaviour was detected. This was due to two phenomena: structural changes of the aggregates and shear thinning behaviour of the dispersion. The build-up of the aggregates was followed by direct observation in a confocal laser scanning microscope. A sequence of micrographs was taken, in an unstopped 3-D flow field generated in a four-roll mill, which showed the evolution of the size of the aggregates. The micrographs were in good agreement with the viscosity measurements. This showed that the four-roll mill and a confocal laser scanning microscope is a useful tool for studying aggregation in an undisturbed 3-D flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.