Abstract

The aggregation stability of 1 : 1 and 3 : 1 (by volume) binary mixtures of two hydrophobic (SiO2–FeOOH), one hydrophobic and one hydrophilic (SiO2–ZrO2, SiO2–CeO2), and two hydrophilic (CeO2–natural diamond) sols was studied by photometry over a wide range of KCl concentrations at pH ≈ 6 and 3. The stability of the mixed binary sols was determined by the stability of the sol with a predominant particle number concentration. In the SiO2–FeOOH system, the phenomenon of heteroadagulation stabilization was caused by the electrostatic factor of the stability of adsorbed SiO2 particles and, in the SiO2–ZrO2 system, by the structural factor of the stability of adsorbed hydrophilic ZrO2 particles. The stability of binary mixtures containing one or two hydrophobic components is qualitatively explained in terms of the Derjaguin theory of heterocoagulation of hydrophobic colloids. The stability of the binary system of two hydrophilic components (CeO2–natural diamond) is determined by the structural component of the interaction energy of particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.