Abstract

Interactions between peptides are relevant from a biomedical point of view, in particular for the role played by their aggregates in different important pathologies, and also because peptide aggregates represent promising scaffolds for innovative materials. In the present article, the aggregation properties of the homo-peptides formed by α-aminoisobutyric acid (U) residues are discussed. The peptides investigated have chain lengths between six and 15 residues and comprise benzyl and naphthyl groups at the N- and C-termini, respectively. Spectroscopic experiments and molecular dynamics simulations show that the shortest homo-peptide, constituted by six U, does not exhibit any tendency to aggregate under the conditions examined. On the other hand, the homologous peptide with 15 U forms very stable and compact aggregates in 70/30(v/v) methanol/water solution. Atomic force microscopy images indicate that these aggregates promote formation of long fibrils once they are deposited on a mica surface. The aggregation phenomenon is mainly due to hydrophobic interactions occurring between very stable helical structures, and the aromatic groups in the peptides seem to play a minor role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.