Abstract

Patterns in drying droplets formed from colloidal solution of copper sulphate and gelatin are investigated with respect to variation of substrate hydrophobicity and salt concentration. Hydrophilic substrates as (i) glass, (ii) quartz and hydrophobic substrate as (iii) polypropylene (PP) have been used. It is observed that the dry residue pattern of salt crystals shows curved branches of crystalline aggregate growth about droplet centre for hydrophilic substrates, while thick, light and dark concentric bands of aggregates are observed for hydrophobic substrates. The geometry and topology of the patterns have been characterized through an analysis of fractal dimension and the topological measure, Euler characteristic. The fractal dimension of the deposit increases substantially with salt concentration for hydrophilic substrates, but decreases with concentration for hydrophobic substrate. Our analysis leads us to propose that an optimal viscosity contrast that facilitates prominent viscous fingers is a function of contact angle and salt concentration. We propose that substrate hydrophobicity and salt concentration together are responsible for DLA-like aggregation in evaporating droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call