Abstract

In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial correlation in the system. One way to do so is to aggregate forecasts from a Space-Time Autoregressive model (Cliff et al., 1975), which offers a solution to the 'curse of dimensionality' that arises when forecasting with VARs. We also show that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. Finally, if the system satisfies a 'poolability' condition, there is a benefit in forecasting the aggregate variable directly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.