Abstract

Red blood cells (RBCs) in the presence of plasma proteins or other macromolecules have a tendency to form aggregates. Light-scattering technique was used to investigate the RBC aggregation process. A highly diluted suspension of RBCs was illuminated with a 632.8-nm HeNe laser. Angular-resolved measurements of light intensity scattered by an RBC suspension from a 200-microm thick optical glass cuvette during 10 min of their aggregation process were performed at 1 to 4 off-axis deg with a very high angular resolution, at hematocrits in the range of 3.5 x 10(-2) to 10(-1). The angular spreading of forward-scattered light at small angles during the RBC aggregation process was described in terms of a new, effective phase function model that has been used for fitting the experimental data. The aggregated RBCs' optical properties, such as effective scattering anisotropy and scattering cross section, were determined. The results were compared with prediction of Mie theory for equivolumetric spherical particles. The time dependence of the aggregates mean radius and of the mean number of cells per aggregate was also calculated. Last, the potential of the proposed technique (forward-scattering light technique) as a new quantitative investigation of cellular aggregation process was estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.