Abstract

Cellulose acetate films dyed with pseudoisocyanine iodide (1,1'-diethyl-2,2'-cyanine iodide) have been produced by spin coating and their structures characterized by FTIR spectroscopy. The aggregation of the cyanine during the spinning process was induced by addition of KI to the precursor solution, and the formation of J-aggregates was observed by UV−vis spectroscopy. The detailed analysis of the O−H stretching mode of cellulose acetate allowed us to understand the types of hydrogen bonds existing in the pure matrix films, in films containing just cyanine monomers and J-aggregates as well. It has been shown that cyanine monomers, even in a large concentration, have a small influence on the cellulose acetate structure, by favoring the replacement of some intermolecular by intramolecular hydrogen bonds. On the contrary, the presence of cyanine J-aggregates remarkably modifies the arrangement of the polymer chains, inducing an extensive formation of intermolecular hydrogen bonds in the C2, C3, and/or C6 pos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.