Abstract

A chimeric protein was produced with the N-terminal domain (amino acids 1-45) of annexin I and the core of annexin V (amino acids 19-320). This protein, annexin IN-VC, has a similar Ca2+ requirement for binding to phospholipid bilayers of 20% phosphatidylserine (PS)/80% phosphatidylcholine (PC) as annexin V. In contrast to annexin V, this protein has a strong potency to aggregate phospholipid vesicles as is shown by turbidimetric measurements and cryo-electron microscopy. Ellipsometry was employed to study quantitatively the phenomenon of phospholipid vesicle adhesion to annexin IN-VC bound to a planar phospholipid bilayer. The amount of phospholipid vesicles bound by annexin IN-VC on the planar bilayer is proportional to its surface coverage and can be inhibited by coadsorption of annexin V on the planar bilayer or by shielding the phospholipid surface of the vesicles with blood coagulation factor Va. Annexin IN-VC, like annexin V, does not bind to pure PC bilayers, but its adsorption on anionic phospholipid bilayers brings about the capacity to bind pure PC vesicles. This suggests that annexin IN-VC generates or exposes after binding to anionic phospholipids another phospholipid binding site, that differs from the annexin V phospholipid binding site. Collectively, the data suggest that two-dimensional cluster formation of annexin IN-VC on a bilayer with anionic phospholipids is involved in vesicle adherence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.