Abstract

Understanding the factors that give rise to tau aggregation and reactive oxygen species (ROS) is the key aspect in Alzheimer’s disease pathogenesis. Microtubule (MT) binding repeats of tau protein were suggested to play a critical role in tau aggregation. Here, we show that the interaction of Cu2+ with full-length MT binding repeats R1–R4 leads to the aggregation, and a Cys-based redox chemistry is critically involved in tau aggregation leading to disulfide-bridge dimerization of R2 and R3 and further aggregation into a fibrillar structure. Notably, ascorbate and glutathione, the most abundant antioxidants in neurons, cannot prevent the effect of Cu2+ on R2 and R3 aggregation. Detailed ESI-MS and NMR experiments demonstrate the interaction of Cu2+ with MT binding repeats. We show that redox activity of copper increases when bound to the MT repeats leading to ROS formation, which significantly contribute to cellular damage and neuron death. Results presented here provide new insights into the molecular mechanism of tau aggregation and ROS formation and suggest a new target domain for tau aggregation inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.