Abstract

We consider the trajectories of particles suspended in a randomly moving fluid. If the Lyapunov exponent of these trajectories is negative, the paths of these particles coalesce, so that particles aggregate. Here we give a detailed account of a method [B. Mehlig and M. Wilkinson, Phys. Rev. Lett. 92, 250602 (2004)] for calculating this exponent: it is expressed as the expectation value of a random variable evolving under a stochastic differential equation. We analyze this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation. We derive an asymptotic perturbation expansion of the Lyapunov exponent for particles suspended in three-dimensional flows in terms of a dimensionless measure of the inertia of the particles, epsilon, and a measure of the relative intensities of potential and solenoidal components of the velocity field, Gamma. We determine the phase diagram in the epsilon-Gamma plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.