Abstract

Aggregation of hormones is an important step in the formation of secretory granules that results in concentration of hormones. In transfected AtT20 cells, but not COS cells, Lubrol-insoluble aggregates of human prolactin (PRL) accumulated within 30 min after synthesis. Aggregation in AtT20 cells was reduced by incubation with 30 microM chloroquine, which neutralizes intracellular compartments, and was slowed by incubation with diethyldithiocarbamate, which chelates Cu(2+) and Zn(2+). H27A-PRL aggregated in AtT20 cells as well as wild-type PRL, indicating that a high affinity Zn(2+)-binding site is not necessary. In solution, purified recombinant human PRL was precipitated by 20 microM Cu(2+) or Zn(2+). In solution without polyethylene glycol there was no precipitation with acidic pH alone, precipitation with Zn(2+) was most effective at neutral pH, and the ratio of Zn(2+) to PRL was greater than 1 in the precipitate. In solution with polyethylene glycol, precipitation occurred with acidic pH, precipitation with Zn(2+) occurred effectively at acidic pH, and the ratio of Zn(2+) to PRL was less than 1. The aggregates obtained in polyethylene glycol are therefore better models for aggregates in cells. Unlike human PRL, aggregation of rat PRL has been shown to occur at neutral pH in cells and in solution, and therefore these two similar proteins form aggregates that are the cores of secretory granules in ways that are not completely identical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.