Abstract

Pulsed electric field (PEF) processing is progressing towards application for liquid egg to ensure microbial safety. However, it usually causes protein aggregation, and the mechanism is still unclear. In this study, egg white protein was applied to investigate the changes in protein structure and mechanism of aggregates formation and a comparison was made with thermal treatment. Soluble protein content decreased with the increase of turbidity after both treatments. Fluorescence intensity and free sulfhydryl content were increased after being treated at 70 °C for 4 min. Less-remarkable changes of hydrophobicity were observed after PEF treatments (30 kV cm(-1) , 800 µs). Soluble and insoluble aggregates were observed by thermal treatment, and disulfide bonds were the main binding forces. The main components of insoluble aggregates formed by thermal treatment were ovotransferrin (30.58%), lysozyme (18.47%) and ovalbumin (14.20%). While only insoluble aggregates were detected during PEF processes, which consists of ovotransferrin (11.86%), lysozyme (21.11%) and ovalbumin (31.07%). Electrostatic interaction played a very important role in the aggregates formation. PEF had a minor impact on the structure of egg white protein. PEF had insignificant influence on heat-sensitive protein, indicating that PEF has potential in processing food with high biological activity and heat sensitive properties. © 2015 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call