Abstract

Aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles containing sodium tetraphenylborate and NaCl are studied with electrokinetic and time-resolved light-scattering techniques. In monovalent salt solutions, AL is positively charged, whereas SL is negatively charged. Electrophoretic mobility measurements demonstrate that adsorption of tetraphenylborate anions leads to a charge reversal of AL particles. At higher concentrations, both types of particles accumulate negative charge. For AL particles, the charge reversal leads to a narrow fast aggregation region and an intermediate regime of slow aggregation. For SL particles, the intermediate slow regime is also observed. These aspects can be explained with classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). Another regime of fast aggregation is observed at intermediate concentrations, and the existence of this regime can be rationalized by an additional attractive non-DLVO force. We suspect that this additional force is caused by surface charge heterogeneities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.