Abstract

We investigate the relationship between the inherent secondary structure and aggregation propensity of peptides containing chameleon sequences (i.e., sequences that can adopt either α or β structure depending on context) using a combination of replica exchange molecular dynamics simulations, ion-mobility mass spectrometry, circular dichroism, and transmission electron microscopy. We focus on an eight-residue long chameleon sequence that can adopt an α-helical structure in the context of the iron-binding protein from Bacillus anthracis (PDB id 1JIG ) and a β-strand in the context of the baculovirus P35 protein (PDB id 1P35 ). We show that the isolated chameleon sequence is intrinsically disordered, interconverting between α-helical and β-rich conformations. The inherent conformational plasticity of the sequence can be constrained by addition of flanking residues with a given secondary structure propensity. Intriguingly, we show that the chameleon sequence with helical flanking residues aggregates rapidly into fibrils, whereas the chameleon sequence with flanking residues that favor β-conformations has weak aggregation propensity. This work sheds new insights into the possible role of α-helical intermediates in fibril formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.