Abstract

The prevalent eye disease age-onset cataract is associated with aggregation of human γD-crystallins, one of the longest-lived proteins. Identification of the γ-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native γD-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain-domain interface crucial for unusually high stability of γD-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135-164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that γD-crystallin may polymerize through successive domain swapping of those three C-terminal β-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone β-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.