Abstract

The mechanism of inclusion aggregation in liquid steel in swirling flow tundish is analyzed by applying the theory of flocculation which was developed in the field of colloid engineering. The gas bridge forces due to the micro bubbles on hydrophobic inclusion surfaces were responsible for the inclusion collision and agglomeration, which can avoid the aggregation to breakup. The quantity of micro bubbles on hydrophobic inclusion particle is more than that on hydrophilic one. The trend of forming gas bridges between micro bubbles on particles is strong in the course of collision. The liquid film on hydrophobic particles is easy to break during collision process. Hydrophobic particles are liable to aggregate in collision. According to the analysis of forces on a nonmetallic inclusion particle in swirling chamber, the chance of inclusion collision and aggregation can be improved by the centripetal force. Hydrophobic particles in water are liable to aggregate in collision. Hydrophilic particles in water are dispersed although collision happens. The wettability can be changed by changing solid-liquid interface tension. The nonmetallic inclusion removal in swirling flow tundish is studied. The result shows that under certain turbulent conditions, the particle concentration and the wettability between particles and liquid steel are the main factors to induce collision and aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.