Abstract

The colloidal particles, especially those at the nanoscale, are the most active part of the pyrogenic carbon (biochar). Increasingly applied biochar has resulted in a large number of biochar nanoparticles (NPs) being released into the environment. The aggregation of biochar NPs affects their environmental behavior and fate. The complex effects of anion type (Cl−, SO42−) and protein (bovine serum albumin, BSA) on the aggregation of wheat straw biochar (WB) and pinewood biochar (PB) NPs in solutions were investigated by the time-resolved dynamic light scattering method. The critical coagulation concentration (CCC) of WB and PB NPs in Na2SO4 solution was higher than their CCCs in NaCl solution, which was consistent with the Hofmeister series that SO42−, a kosmotrope anion, increased the interaction between water molecules, thus enhancing the hydrophobic interactions between biochar NPs in solution and promoting their aggregation, while Cl−, a chaotropic agent, exhibited the opposite effect. When BSA was added into the solution, BSA was adsorbed on the surface of biochar NPs and BSA corona was formed, which inhibited the aggregation of biochar NPs by inducing steric force. The enhanced stability of biochar NPs by BSA was more significant in NaCl than in Na2SO4 solution because BSA corona had a more negatively charged surface and a more steric structure in NaCl solution, thus generating stronger electrical repulsion and steric hindrance. The classical DLVO theory and the XDLVO theory incorporating the steric repulsion (in the presence of BSA) were used to interpret the aggregation and dispersion of biochar NPs. Through this study, we found that anion type indirectly affected the aggregation of biochar NPs by influencing the interaction between water molecules, while the aggregation of BSA-biochar NPs conjugates is mainly influenced by the surface charge and structure of BSA corona.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.